Distances and Riemannian Metrics for Spectral Density Functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE LIFTS OF SEMI-RIEMANNIAN METRICS

In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...

متن کامل

Unsupervised Riemannian Clustering of Probability Density Functions

We present an algorithm for grouping families of probability density functions (pdfs). We exploit the fact that under the square-root re-parametrization, the space of pdfs forms a Riemannian manifold, namely the unit Hilbert sphere. An immediate consequence of this re-parametrization is that different families of pdfs form different submanifolds of the unit Hilbert sphere. Therefore, the proble...

متن کامل

On the distances between probability density functions

We give estimates of the distance between the densities of the laws of two functionals F and G on the Wiener space in terms of the Malliavin-Sobolev norm of F −G. We actually consider a more general framework which allows one to treat with similar (Malliavin type) methods functionals of a Poisson point measure (solutions of jump type stochastic equations). We use the above estimates in order to...

متن کامل

Sobolev Metrics on the Riemannian Manifold of All Riemannian Metrics

On the manifold M(M) of all Riemannian metrics on a compact manifold M one can consider the natural L-metric as decribed first by [10]. In this paper we consider variants of this metric which in general are of higher order. We derive the geodesic equations, we show that they are well-posed under some conditions and induce a locally diffeomorphic geodesic exponential mapping. We give a condition...

متن کامل

Riemannian metrics for neural networks

We describe four algorithms for neural network training, each adapted to different scalability constraints. These algorithms are mathematically principled and invariant under a number of transformations in data and network representation, from which performance is thus independent. These algorithms are obtained from the setting of differential geometry, and are based on either the natural gradi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2007

ISSN: 1053-587X

DOI: 10.1109/tsp.2007.896119